If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+7x-19=0
a = 5; b = 7; c = -19;
Δ = b2-4ac
Δ = 72-4·5·(-19)
Δ = 429
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-\sqrt{429}}{2*5}=\frac{-7-\sqrt{429}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+\sqrt{429}}{2*5}=\frac{-7+\sqrt{429}}{10} $
| .25(x)=5 | | 1|4(x)=5 | | 14-3xx=26 | | 12x+6=4x+20 | | 3(4c+5)+10=1 | | 7.3k=-3.72-11.3k | | 1/5y-y=76 | | 1/3(15x+24)-4=3/4(8x-12) | | 3|x+2|=-9 | | 175m-75m+48,250=51,000-150 | | -8=20-x | | 9x2=Y+10 | | 1.2=3s-1.9 | | 3(j-40)=81 | | 14p-19-19=17+19p | | -1=3x+17 | | 3•(x+8)+90=180 | | 160=5x-10 | | 7+1x+4=70 | | -5h=-6h-18 | | 3(x+8)+(x+8)+90=180 | | 21−7x=-21 | | 6.4g+2=2.4g+18 | | 17-t=-4t-10 | | (-3)(x)=5 | | (6x+19)+(3x-6)+(5x-15)=180 | | 3.7g+5=1.7g+13 | | 3(x+8)+90=180 | | X4-2x3-8x2+12x-16=0 | | 3x+(x+8)+90=180 | | n-2+n=(-8) | | -14+q=91/2 |